

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	grampg 0.2.0 documentation

grampg’s documentation

Password generation with a fluent interface... a nice treat when you’re under supervision of a grumpy sysadmin.

Contents:

	Description
	The PasswordGenerator / Generator duality

	Technical description

	grampg API

	The password generation algorithm

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Elvio Toccalino.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	grampg 0.2.0 documentation

Description

The grampg code provides you with a password generator object, a bottomless barrel from which you can pull passwords. The difference between this generator object and something like /dev/random or ''.join([random.choice(letters) for i in range(LEN)]) is that you get to build that generator with great specificity, to obtain passwords adequate to your needs.

You will first have to build the generator, though. This could be a tedious, and a difficult task. Consider the following example:

how would you tell the builder you want passwords 10 characters long,
with lower letters and at least 3 numbers, starting with a letter?

grampg provides an easy to use interface, aimed at translating your needs intuitively.

Building the generator object is done in steps, using a builder object. At each step you add a spec (think of it as a piece of specification). You proceed working on the builder object accumulating specs, all of which add up to the requirements your passwords must satisfy. In the case of the example, you could use something like this:

gen = PasswordGenerator().of().length(10).at_most(10, 'lower_letters')
 .at_least(3, 'numbers')
 .beginning_with('lower_letters')
 .done()

The expression above will yield a generator object ready to produce passwords, exactly as you require them.

Note

The order in which specs are added is irrelevant. You are encourage to declare your specs as they sound more natural in your head; doing so greatly improves maintainability of the code.

Now that you have your generator object, you can use it throughout your own code:

passwords = [gen.generate() for i in xrange(so_many_passwords)]

And that’s what grampg offers: a simple way to specify contrived password schema.

Note

In case you’re wondering, passwords generated by the resulting generator object are strong. You can revise the algorithm later in this docs. XXX add reference to that.

The PasswordGenerator / Generator duality

Apart from a small hierarchy of three exceptions to deal with errors, the grampg exposes two classes to the user: the Generator and the PasswordGenerator. The naming might be confusing, but (as much in the design of this library) it is for the sake of code readability.

Of the two classes, the grampg.Generator is the actual password generator. It accumulates and holds your specs, generates the passwords and is the object which the user will keep reference to (in most, but not all, use cases). It implements the grampg.Generator.generate() method, and that says it all.

The grampg.PasswordGenerator, on the other hand, is the builder class. Its instances will create and stow away a grampg.Generator instance for the user, and will act as its interface as specs are added. It relinquishes control of the generator object only when the building phase is terminated (when it receives a call to done()).

This explains the naming choices: the user should never have the need to write Generator() but PasswordGenerator.of() (both idioms being equivalent, the second instantiates the generator object internally).

Technical description

The two classes exposed by the grampg module constitute a builder and product pair. The builder aids the user in specifying an adequate representation of the product.

Generators are instances of grampg.Generator. A generator object is instantiated with the sets of characters to use, and is responsible for accumulating the specs through method calls. The user, however, does not need to know any of that. The user never really interacts with a grampg.Generator instance directly, but through the builder. For the user, generator objects have one method of interest, generate(), which produces a single, independent and strong password string each time it’s called, but which can be called only when the specification phase is done.

A builder object is an instances of grampg.PasswordGenerator, and provides a fluent interface to the Generator internal object being specified. The interface leverages method chaining and the builder pattern to provide a quick and easy specification phase. The grampg.PasswordGenerator provides a means of defining non-default character sets (characters to choose from when generating passwords), and passes user specs to the generator object being built. The builder object returns the generator object only when a call to done() succeeds. The generator object returned is ready to receive calls to generate().

 Copyright 2012, Elvio Toccalino.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	grampg 0.2.0 documentation

grampg API

When interfacing the grampg you will instantiate PasswordGenerator, configure your character sets if necessary, and call of() on it to instantiate an internal Generator. The PasswordGenerator is in fact little more than a fluent interface to build generators. The generator instance is returned only when done() is called.

By means of the PasswordGenerator instance, the Generator instance can then be progressively spec’ed, so passwords generated by it can conform to you’re twisted needs.

	
class grampg.PasswordGenerator(from_sets={})[source]

	Build the password generator.

Provides a fluent interface to build Generator instances, by means
of method chaining.

Exposes the character sets. Default character sets are provided for upper
and lower case letters (upper_letters and lower_letters, respectively,
all mashed up in letters) and numbers. A conjunction of the three is
also provided, under the name alphanumeric.

A character set can be registered by keying its name to a list of eligible
characters in the sets attribute, or by extending the default
character sets during instantiation.

	
at_least(low, setname)[source]

	Spec method: require no less than low but no more than high
characters from that set. This spec defines a range of characters.

	
at_most(high, setname)[source]

	Spec method: require no more than high characters from that
set. This spec defines a range of characters.

	
beginning_with(setname)[source]

	Spec method: passwords will start with a char from this set.

Some other spec method must be called to define a number or range for
that same set. Beginning with characters not specified is an error.

	
between(low, high, setname)[source]

	Spec method: require no less than low but no more than high
characters from that set. This spec defines a range of characters.

	
done()[source]

	Finalize the generator and return it.

The returned instance can receive calls to generate(),
each of which will produce an independent password complying with the
specs.

	
ending_with(setname)[source]

	Spec method: passwords will end with a char from this set.

Some other spec method must be called to define a number or range for
that same set. Ending with characters not specified is an error.

	
exactly(quantity, setname)[source]

	Spec method: require exactly this many characters from the set.

	
length(length)[source]

	Spec method: adjust the total length of passwords to generate.

	
of()[source]

	Commence a method chain building a fresh generator instance.

The generator instanciated by this call is new, but the character sets
fed to it are always the same (the ones configured during
__init__()). If a different character set is desired, a new
instance of PasswordGenerator is neccessary.

The generator will be finalized by a done() call, and
then used by calling generate() on it.

	
some(setname)[source]

	Spec method: use characters from the set, if they fit.

Once the you have specified your password scheme, you will have access to the generator instance.

	
class grampg.Generator(sets)[source]

	The generator object.

A generator instance undergoes three phases during its existance: create it
with the character sets to choose from, specify it by calling its methods
finalizing in a call to done(), and generate passwords
with it by calling its generate() method.

Character sets should not be modified once the generator is
instantiated. If other character sets are required, a new instance should
be used.

During the specification, repeated calls to the same method (consecutively
or otherwise) overrides previous calls, so it is not an error to call them
more than once. Specification is over after a call done()
succeds. Once done, the generator cannot be further spec’ed, and only
calls to generate() are valid (although it is possible to call
done() over and over again, it does not have effect).

Any attempt to add new specs to a done generator will raise
PasswordGeneratorIsDone.

Note

Generator instances should be built by means of
PasswordGenerator, and only the generate() method should
ever be directly called on instances of this class.

	
generate()[source]

	Return one generated password based on the collected specs.

Can be called any number of times, each yielding a new, independant
password.

Raises PasswordSpecsNonValidatedError if the generator is not
done (the done() method has not yet been called).
Raises PasswordSpecError if frame spec methods (length,
beginning_with ending_with) collide.

In case of errors during the specification, the following exceptions are used.

	
exception grampg.PasswordSpecsError[source]

	Root of grampg exceptions.

Itself used to signal errors during specification or validation of a
generator.

	
exception grampg.PasswordSpecsNonValidatedError[source]

	Raised when generate() is called on a generator before a
it is done.

	
exception grampg.PasswordGeneratorIsDone[source]

	Raised when a new specification is attempted on a done generator.

 Copyright 2012, Elvio Toccalino.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	grampg 0.2.0 documentation

The password generation algorithm

XXX describe the algorithm, its strengh and limitation.

 Copyright 2012, Elvio Toccalino.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	grampg 0.2.0 documentation

 Python Module Index

 g

 			

 		
 g	

 	
 	
 grampg (Unix, Windows)	
 Simple and flexible password generation library.

 Copyright 2012, Elvio Toccalino.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	grampg 0.2.0 documentation

Index

 A
 | B
 | D
 | E
 | G
 | L
 | O
 | P
 | S

A

 	

 	at_least() (grampg.PasswordGenerator method)

 	

 	at_most() (grampg.PasswordGenerator method)

B

 	

 	beginning_with() (grampg.PasswordGenerator method)

 	

 	between() (grampg.PasswordGenerator method)

D

 	

 	done() (grampg.PasswordGenerator method)

E

 	

 	ending_with() (grampg.PasswordGenerator method)

 	

 	exactly() (grampg.PasswordGenerator method)

G

 	

 	generate() (grampg.Generator method)

 	Generator (class in grampg)

 	

 	grampg (module), [1]

L

 	

 	length() (grampg.PasswordGenerator method)

O

 	

 	of() (grampg.PasswordGenerator method)

P

 	

 	PasswordGenerator (class in grampg)

 	PasswordGeneratorIsDone

 	

 	PasswordSpecsError

 	PasswordSpecsNonValidatedError

S

 	

 	some() (grampg.PasswordGenerator method)

 Copyright 2012, Elvio Toccalino.
 Created using Sphinx 1.3.1.

 _static/up.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/up-pressed.png

_static/minus.png

_static/down-pressed.png

_static/comment-close.png

_static/file.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		grampg 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Elvio Toccalino.
 Created using Sphinx 1.3.1.

_modules/grampg.html

 Navigation

 		
 index

 		
 modules |

 		grampg 0.2.0 documentation »

 		Module code »

 Source code for grampg

Copywrite 2012 Elvio Toccalino

This file is part of grampg.
#
grampg is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
grampg is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with grampg. If not, see <http://www.gnu.org/licenses/>.

"""
Defines the exception hierarchy, helper funtions and the main classes.

The exception hierarchy is based on :exc:`PasswordSpecsError`, extended by
:exc:`PasswordSpecsNonValidatedError` and :exc:`PasswordGeneratorIsDone` to
signal improper usage.

For details about the password generation algorithm read the grampg/docs.

Use the :class:`PasswordGenerator` as interface.
"""

import random
import string

[docs]class PasswordSpecsError(Exception):
 """
 Root of grampg exceptions.

 Itself used to signal errors during specification or validation of a
 generator.
 """
 pass

[docs]class PasswordSpecsNonValidatedError(PasswordSpecsError):
 """
 Raised when :meth:`~Generator.generate` is called on a generator before a
 it is *done*.
 """
 pass

[docs]class PasswordGeneratorIsDone(PasswordSpecsError):
 """
 Raised when a new specification is attempted on a *done* generator.
 """
 pass

###

def infinite_iter(character_set):
 """Transform a character set into a generator-iterator.

 Each value yielded is a :func:`random.choice` on the `character_set`."""
 if not character_set:
 return
 # yield forever.
 while True:
 yield random.choice(character_set)

def choice_of_spec(specs):
 """Return a random spec element from the sequence of `specs`.

 The probability of picking a particular spec is directly dependant on the
 `len` of its associated character set (expected at spec.set).

 Raises :exc:`~exception.ValueError` if `specs` is an empty sequence.
 """
 if not specs:
 raise ValueError('specs must not be empty.')
 sample = sum(len(spec.set) for spec in specs)
 choice = random.randint(1, sample)
 for spec in specs:
 spec_len = len(spec.set)
 if choice <= spec_len:
 return spec
 choice -= spec_len

###

class Spec(object):
 """
 An iterator-like object which choses randomly from the character set.

 Not meant to be used, but subclassed. This class defines the internal state
 of *specs*, and the API each should provide.
 """

 def __init__(self, character_set, low=0, high=0):
 """Prepare the iteration.

 The default values of `low` and `high` are so that these can be
 accumulated over multiple specs, to produce *minimum* and *maximum*
 length, if desired.

 Positional arguments:
 character_set -- the character set to chose from.
 low -- the lower bound of the spec (default 0).
 high -- the upper bound of the spec (default 0).
 """
 self.low = low
 self.high = high
 self.set = character_set
 # Initialize the character generator-iterator.
 self.chars = infinite_iter(character_set)
 # Characters yielded so far.
 self.yielded = 0
 # Syntax sugar.
 self.another_character = self.__next__

 def in_range(self):
 """Whether the amount of chars yielded so far satisfy this spec."""
 return self.low <= self.yielded and self.yielded <= self.high

 def reset(self):
 """Reset internal state, the count of yielded characters."""
 self.yielded = 0

 def __next__(self):
 """Return next randomly chosen char in the set."""
 if self.yielded == self.high:
 raise StopIteration()
 self.yielded += 1
 return next(self.chars)
 next = __next__

 def __iter__(self):
 return self

 def fix(self, full_length=None):
 """Fix the range of the spec."""
 raise NotImplementedError()

class CharacterExact(Spec):
 """
 Specify an exact number of characters for a particular set.
 """

 def __init__(self, character_set, quantity):
 """Initialize the spec.

 Positional arguments:
 character_set -- the character set to chose characters from.
 quantity -- the (positive integer) number of characters to chose.

 Raises :exc:`ValueError` if ``quantity`` is not a positive integer.
 """
 if type(quantity) != int or quantity < 0:
 raise ValueError("quantity must be a non-negative integer.")

 # self.low and self.high are both set to quantity.
 super(CharacterExact, self).__init__(character_set, quantity, quantity)

 def fix(self, full_length=None):
 """Exact specs are always fixed."""
 pass

class CharacterRange(Spec):
 """
 Specify a numeric range for the number of characters for a character set.

 The range may be open at lower or upper bound, but not both. Use the
 :meth:`fix` operation to turn the range into a closed one, suitable to be
 used during generation. Notice that you can only fix the upper bound of a
 range if the total length of the password has been specified (via a call to
 :meth:`length`).
 """

 def __init__(self, character_set, low=None, high=None):
 """Initialize the spec.

 Positional parameters:
 character_set -- the identifier of the charset to chose chars from.
 low -- the optional positive integer minimum number of chars to chose.
 high -- the optional positive integer maximum number of chars to chose.

 Although optional, either low or high (or both) must be provided.

 Raises :exc:`ValueError` if either ``low`` or ``high`` (which ever is
 given, or both) is not a positive integer.
 """
 # By default consider closed ranges.
 self.initialized = True

 if high is not None:
 if type(high) != int or high < 0:
 raise ValueError("high must be a positive integer.")
 if low is not None:
 if type(low) != int or low < 0:
 raise ValueError("low must be a positive integer.")
 super(CharacterRange, self).__init__(character_set, low, high)
 else:
 super(CharacterRange, self).__init__(character_set, high=high)
 elif low is not None:
 if type(low) != int or low < 0:
 raise ValueError("low must be a positive integer.")
 # An unbound range cannot be initialize. Should be fixed.
 # Temporary storage.
 self.low = low
 self.character_set = character_set
 self.initialized = False
 else:
 raise PasswordSpecsError("Either low or high bound"
 " must be specified.")

 def fix(self, full_length=None):
 """Force upper bound to have a meaningful value... or error out."""
 if not self.initialized:
 # Fix the upper bound.
 high = self.low
 if full_length:
 high = full_length

 super(CharacterRange, self).__init__(self.character_set,
 self.low, high)
 self.initialized = True

###

[docs]class Generator:
 """
 The generator object.

 A generator instance undergoes three phases during its existance: create it
 with the character sets to choose from, specify it by calling its methods
 finalizing in a call to :meth:`done`, and generate passwords
 with it by calling its :meth:`generate` method.

 Character sets should not be modified once the generator is
 instantiated. If other character sets are required, a new instance should
 be used.

 During the specification, repeated calls to the same method (consecutively
 or otherwise) overrides previous calls, so it is not an error to call them
 more than once. Specification is over after a call :meth:`~Generator.done`
 succeds. Once *done*, the generator cannot be further spec'ed, and only
 calls to :meth:`generate` are valid (although it is possible to call
 :meth:`done` over and over again, it does not have effect).

 Any attempt to add new specs to a *done* generator will raise
 :exc:`PasswordGeneratorIsDone`.

 .. note::

 Generator instances should be built by means of
 :class:`PasswordGenerator`, and only the :meth:`generate` method should
 ever be directly called on instances of this class.
 """

 def __init__(self, sets):
 """Initialize the generator with the character sets to use.

 Positional parameters:
 * the character sets to be used.
 """
 self.sets = sets
 self._length = None

 self.begins_with = None
 self.ends_with = None

 # When the generator is done, no more specs will be allowed.
 self._done = False

 # Collect the spacs as they come.
 self.specs = {}

 def _validate(self, setname):
 if self._done:
 raise PasswordGeneratorIsDone()
 if setname not in self.sets:
 raise PasswordSpecsError('Unknown character set.')

 def length(self, length):
 """Set the length of generated passwords."""
 if self._done:
 raise PasswordGeneratorIsDone()

 if type(length) != int or length < 1:
 raise ValueError('Length must a natural number.')
 self._length = length

 def exactly(self, quantity, setname):
 """
 Specify an exact amount of characters for this set to be included in
 the generated passwords.
 """
 self._validate(setname)
 self.specs[setname] = CharacterExact(self.sets[setname], quantity)

 def some(self, setname):
 """Specify an inexact number of characters to include in passwords."""
 self._validate(setname)
 self.specs[setname] = CharacterRange(self.sets[setname], low=0)

 def between(self, low, high, setname):
 """
 Specify an fixed range of characters for this set to be included in
 the generated passwords.
 """
 self._validate(setname)
 self.specs[setname] = CharacterRange(self.sets[setname], low, high)

 def at_least(self, low, setname):
 """
 Specify the minimum amount of characters for this set to be included in
 the generated passwords.
 """
 self._validate(setname)
 self.specs[setname] = CharacterRange(self.sets[setname], low=low)

 def at_most(self, high, setname):
 """
 Specify the maximum amount of characters for this set to be included in
 the generated passwords.
 """
 self._validate(setname)
 self.specs[setname] = CharacterRange(self.sets[setname], high=high)

 def beginning_with(self, setname):
 """The password should begin with a character from this set."""
 self._validate(setname)
 self.begins_with = setname

 def ending_with(self, setname):
 """The password should end with a character from this set."""
 self._validate(setname)
 self.ends_with = setname

 def done(self):
 """Signals that the generator is ready to start producing passwords.

 Note that this call *freezes* or *marks* the generator object, which
 will not be able to receive further specs. A successful call to `done`
 must be made before :meth:`generate` can be called.

 This method is idempotent and irreversible.

 Raises :exc:`PasswordSpecsError` if validation of the specs fails.
 """
 if self._done:
 return

 if not self.specs:
 raise PasswordSpecsError("No character set spec is associated to"
 " this generator.")

 # Minimum length spec'ed, which is expected by generate().
 min_length = 0
 # Maximum length spec'ed, which is expected by generate().
 max_length = 0
 # Fix and accumulate minimum and maximum lengths
 for spec in self.specs.values():
 spec.fix(full_length=self._length)

 min_length += spec.low
 max_length += spec.high

 # Length validation of the specifications.
 if self._length and (self._length < min_length
 or self._length > max_length):
 raise PasswordSpecsError('Length value specified is not'
 ' compatible with the other specs.')

 # Begin/end specifications validation.
 for spec in ['begins_with', 'ends_with']:
 setname = getattr(self, spec)
 if setname:
 if setname not in self.specs.keys():
 raise PasswordSpecsError('beginning_with/ending_with'
 ' specifies bad character set'
 ' "%s"' % setname)
 if self.specs[setname].high < 1:
 raise PasswordSpecsError('"%s" character set cannot '
 'fulfill beginning_with/'
 'ending_with spec.' % setname)

 # Mark generator as *done*, will not receive further specs.
 self._done = True

[docs] def generate(self):
 """Return one generated password based on the collected specs.

 Can be called any number of times, each yielding a new, independant
 password.

 Raises :exc:`PasswordSpecsNonValidatedError` if the generator is not
 done (the :meth:`done` method has not yet been called).
 Raises :exc:`PasswordSpecError` if frame spec methods (``length``,
 ``beginning_with`` ``ending_with``) collide.
 """

 # Validate the specifications are done.
 if not self._done:
 raise PasswordSpecsNonValidatedError(
 "generate() called before done().")

 # Edge case: no character specs (only length, begin or end).
 if not self.specs:
 return ''

 # First, satisfy the minimum length specificated.

 # mins collects the minimum acceptable result from each spec.
 begins_with_char = ''
 ends_with_char = ''
 mins = []
 running_length = 0
 for spec_name, spec in self.specs.items():
 try:
 # Notice if this happens to be the one to begin the result.
 if self.begins_with == spec_name:
 begins_with_char = spec.another_character()
 running_length += 1
 # Or in case it's the one to end it.
 if self.ends_with == spec_name:
 ends_with_char = spec.another_character()
 running_length += 1
 except StopIteration:
 raise PasswordSpecsError("Bad spec beginning_with/ending_with"
 " %s character set." % spec_name)

 # Get a minimum amount of characters to satisfy this spec.
 chars = []
 while not spec.in_range():
 chars.append(spec.another_character())
 running_length += 1
 mins.append(chars)

 # Get all chars chosen so far, from all sets, into a bag.
 bag = []
 for chars in mins:
 bag.extend(chars)

 # The minimum length of all specs might not suit the specified length.

 if self._length and running_length < self._length:
 # To advance the length of the password, chose randomly
 # a specified character set and select another character.
 remaining_specs = [spec for spec in self.specs.values()
 if spec.in_range()]
 while running_length < self._length:
 chosen_spec = choice_of_spec(remaining_specs)
 # Check the character sets, so as to remove capped ones.
 try:
 bag.append(chosen_spec.another_character())
 running_length += 1
 except StopIteration:
 # Spec has reached maximum number of tolerated chars.
 remaining_specs.remove(chosen_spec)

 # Shuffle the bag to produce the output password.
 random.shuffle(bag)
 password = ''.join(bag)

 # Add the first and/or last chars if length is not tight.
 password = begins_with_char + password + ends_with_char
 if self._length:
 # Length was specified, so check if there's an error in the specs.
 if self._length != len(password):
 raise PasswordSpecsError("Password length is incorrect (check"
 " beginning_with/ending_with specs)")

 # Before terminating, reset the internal state of the specs.
 for spec in self.specs.values():
 spec.reset()

 return password

[docs]class PasswordGenerator:
 """
 Build the password generator.

 Provides a fluent interface to build :class:`Generator` instances, by means
 of method chaining.

 Exposes the character sets. Default character sets are provided for upper
 and lower case letters (`upper_letters` and `lower_letters`, respectively,
 all mashed up in `letters`) and `numbers`. A conjunction of the three is
 also provided, under the name `alphanumeric`.

 A character set can be registered by keying its name to a list of eligible
 characters in the :attr:`sets` attribute, or by extending the default
 character sets during instantiation.
 """

 _lower_letters = string.ascii_lowercase
 _upper_letters = string.ascii_uppercase
 _numbers = string.digits
 _letters = string.ascii_letters
 _alpha = _letters + _numbers

 def __init__(self, from_sets={}):
 """Allow extra character sets to be registered.

 Keyword paramenters:
 from_sets: a dict of char set name to list of chars (default is {}).
 """
 self.sets = {
 'lower_letters': list(PasswordGenerator._lower_letters),
 'upper_letters': list(PasswordGenerator._upper_letters),
 'letters': list(PasswordGenerator._letters),
 'numbers': list(PasswordGenerator._numbers),
 'alphanumeric': list(PasswordGenerator._alpha),
 }
 self.sets.update(from_sets)
 self.generator = None

[docs] def of(self):
 """Commence a method chain building a fresh generator instance.

 The generator instanciated by this call is new, but the character sets
 fed to it are always the same (the ones configured during
 :meth:`__init__`). If a different character set is desired, a new
 instance of :class:`PasswordGenerator` is neccessary.

 The generator will be finalized by a :meth:`done` call, and
 then used by calling :meth:`~Generator.generate` on it.
 """
 self.generator = Generator(self.sets)
 return self

[docs] def length(self, length):
 """*Spec method*: adjust the total length of passwords to generate."""
 self.generator.length(length)
 return self

[docs] def exactly(self, quantity, setname):
 """*Spec method*: require exactly this many characters from the set."""
 self.generator.exactly(quantity, setname)
 return self

[docs] def some(self, setname):
 """*Spec method*: use characters from the set, if they fit."""
 self.generator.some(setname)
 return self

[docs] def between(self, low, high, setname):
 """
 Spec method: require no less than `low` but no more than `high`
 characters from that set. This spec defines a range of characters.
 """
 self.generator.between(low, high, setname)
 return self

[docs] def at_least(self, low, setname):
 """
 Spec method: require no less than `low` but no more than `high`
 characters from that set. This spec defines a range of characters.
 """
 self.generator.at_least(low, setname)
 return self

[docs] def at_most(self, high, setname):
 """
 Spec method: require no more than `high` characters from that
 set. This spec defines a range of characters.
 """
 self.generator.at_most(high, setname)
 return self

[docs] def beginning_with(self, setname):
 """*Spec method*: passwords will start with a char from this set.

 Some other *spec method* must be called to define a number or range for
 that same set. Beginning with characters not specified is an error.
 """
 self.generator.beginning_with(setname)
 return self

[docs] def ending_with(self, setname):
 """*Spec method*: passwords will end with a char from this set.

 Some other *spec method* must be called to define a number or range for
 that same set. Ending with characters not specified is an error.
 """
 self.generator.ending_with(setname)
 return self

[docs] def done(self):
 """Finalize the generator and return it.

 The returned instance can receive calls to :meth:`~Generator.generate`,
 each of which will produce an independent password complying with the
 specs.
 """
 self.generator.done()
 return self.generator

 © Copyright 2012, Elvio Toccalino.
 Created using Sphinx 1.3.1.

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		grampg 0.2.0 documentation »

 All modules for which code is available

		grampg

 © Copyright 2012, Elvio Toccalino.
 Created using Sphinx 1.3.1.

